python - Custom coloration for matrix in matplotlib -


i have 3 matrices i'd plot, solution i've come plotting 1 after other, , leaves me last matrix plotted.

ax.imshow(mat1, cmap='blues', interpolation='nearest') ax.imshow(mat2, cmap='binary', interpolation='nearest') ax.imshow(mat3, cmap='autumn', interpolation='nearest')  # actual plot 

what want display 0s in 3 matrices in white, , higher values in different tones depending on matrix, e.g.: blue, black , red. also, in example, red cells have precedence on black , black on blue. solution i'm imagining function that, given triple (blue, black, red) different values each component, returns color cell should colored, , feed colormap, don't know how or if it's possible.

every kind of , different solutions (that's happen) welcome , appreciated. in advance.

you want fourth image, rgb value @ each point function of single value of first 3 matrixes @ corresponding point? if so, can produce algebra 3 values rgb fourth?

your question suggests confusion how plotting turns data colors. colormap takes single-valued data, normalizes it, , maps named array of colors. 0 values might mapped color, depending on colormap , rest of data.

a bitmap defines (red, green, blue) values @ each pixel. proper bitmaps have header sections, data (m,n,3) array. imshow plots array; expects rgb values in [0,1] range.

if have 3 data matrices, have choose how map values rgb values. here's example 3 kinds of mapping rgb. first 2 rows dummy data range of values, shown either colormap or simplest rgb representation. last row shows ways of combining 3 dummy matrices 1 image using whole colorspace.

# -*- coding: utf-8 -*- import matplotlib.pyplot plt import numpy np  #dummy data x = 8 y = 15 mat = [] mat.append(np.arange(x * y).reshape((x, y)) / float(x * y) ) mat.append(np.arange(x * y).reshape((y, x)).t / float(x* y)) mat.append(np.arange(y) * np.arange(x)[:,np.newaxis] / float(99))  # note: data approximately in rgb range. if yours isn't, normalize, # here or in makergb function. # (the colormap normalizes single-valued data).  fig, axs = plt.subplots(figsize=(7,4), nrows=3, ncols=3,                         gridspec_kw={'hspace':0.6})  axs[0,0].imshow(mat[0], cmap='reds', interpolation='nearest') axs[0,1].imshow(mat[1], cmap='greens', interpolation='nearest') axs[0,2].imshow(mat[2], cmap='blues', interpolation='nearest') axs[0,0].set_xlabel('reds colormap') axs[0,1].set_xlabel('greens colormap') axs[0,2].set_xlabel('blues colormap')  def asonehue(mat, hue):     """     use single-valued matrix represent 1 hue in rgb file.'     """     rgbout = np.zeros((len(mat),len(mat[0]),3))     rgbout[:,:,i] = mat     return rgbout  in (0,1,2):     axs[1,i].imshow(asonehue(mat[i],i)) axs[1,0].set_xlabel('reds bitmap') axs[1,1].set_xlabel('greens bitmap') axs[1,2].set_xlabel('blues bitmap')  # different ways combine 3 values def makergb0(mats):     rgbout = np.zeros((len(mats[0]),len(mats[0][0]),3))     #rgbout = np.ones((len(mats[0]),len(mats[0][0]),3))     in (0,1,2):         rgbout[:,:,i] = mats[i]     return rgbout  axs[2,0].imshow(makergb0(mat)) axs[2,0].set_xlabel('color layers')  def makergb1(mats):     rgbout = np.zeros((len(mats[0]),len(mats[0][0]),3))     i,j,k = rgbout.shape      x in range(i):         y in range(j):             rgbout[x,y] = (mats[0][x][y] / 2,                            mats[1][x][y],                            1 - mats[2][x][y])     return rgbout   axs[2,1].imshow(makergb1(mat)) axs[2,1].set_xlabel('algebraic')  def makergb2(mats):     rgbout = np.zeros((len(mats[0]),len(mats[0][0]),3))     i,j,k = rgbout.shape     x in range(i):         y in range(j):             if mats[0][x][y] > .8:                 rgbout[x,y] = (mats[0][x][y],                                0,                                0)             elif mats[1][x][y] > .8:                     rgbout[x,y] = (0,                                    mats[1][x][y],                                    0)             else:                     rgbout[x,y] = (mats[0][x][y],                                    mats[1][x][y],                                    mats[2][x][y])     return rgbout  axs[2,2].imshow(makergb2(mat)) axs[2,2].set_xlabel('if-else')  plt.show() 

enter image description here


Comments

Popular posts from this blog

jquery - How do you format the date used in the popover widget title of FullCalendar? -

Bubble Sort Manually a Linked List in Java -

asp.net mvc - SSO between MVCForum and Umbraco7 -